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1 Main results

Theorem 1. Suppose an ∼ bn as n → ∞, where bn is nonnegative or nonpositive
for large n,

∑
n≥0 bnx

n converges for all |x| < 1, and∑
n≥0

bn = ±∞.

Then ∑
n≥0

anx
n ∼

∑
n≥0

bnx
n as x→ 1−.

Proof. We can assume, without loss of generality, that bn is eventually nonnegative.
If necessary we just replace an and bn with −an and −bn, respectively.

By assumption an = bn + bnδn, where δn → 0 as n → ∞. Fix ε > 0, let N ≥ 0
be such that |δn| < ε and bn ≥ 0 for all n > N , then write∑

n≥0
anx

n =
∑
n≥0

(bn + bnδn)xn

=
∑
n≥0

bnx
n +

∑
n≥0

bnδnx
n

=
∑
n≥0

bnx
n +

∑
n>N

bnδnx
n +

∑
n≤N

bnδnx
n. (1)

We will show that the two rightmost sums are small when compared with
∑

n≥0 bnx
n.

Note that we can find an X0 ∈ [0, 1) such that
∑

n≥0 bnx
n > 0 for X0 < x < 1.

Throughout the proof we will assume that x lies in this interval.
First we’ll handle the rightmost sum in (1). We have∣∣∣∣∣

∑
n≤N bnδnx

n∑
n≥0 bnx

n

∣∣∣∣∣ <
∑

n≤N bn|δn|∑
n≥0 bnx

n
,
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so since
∑

n≥0 bnx
n →∞ as x→ 1− we can find an X1 ∈ [0, 1) such that∣∣∣∣∣

∑
n≤N bnδnx

n∑
n≥0 bnx

n

∣∣∣∣∣ < ε (2)

for X1 < x < 1.
Next we’ll treat the sum

∑
n>N bnδnx

n. By our choice of N we may deduce that∣∣∣∣∣∑
n>N

bnδnx
n

∣∣∣∣∣ ≤ ∑
n>N

bn|δn|xn

< ε
∑
n>N

bnx
n

= ε
∑
n≥0

bnx
n − ε

∑
n≤N

bnx
n

< ε
∑
n≥0

bnx
n + ε

∑
n≤N
|bn|. (3)

We can find an X2 ∈ [0, 1) such that∑
n≤N |bn|∑
n≥0 bnx

n
< 1

for X3 < x < 1, so under this condition we gather from (3) that∣∣∣∣∣∑
n>N

bnδnx
n

∣∣∣∣∣ < 2ε
∑
n≥0

bnx
n. (4)

In light of (2) and (4), if we assume that max{X0, X1, X2} < x < 1 then by (1)
we have ∣∣∣∣∣

∑
n≥0 anx

n∑
n≥0 bnx

n
− 1

∣∣∣∣∣ =

∣∣∣∣∣
∑

n≤N bnδnx
n∑

n≥0 bnx
n

+

∑
n>N bnδnx

n∑
n≥0 bnx

n

∣∣∣∣∣
≤

∣∣∣∣∣
∑

n≤N bnδnx
n∑

n≥0 bnx
n

∣∣∣∣∣+

∣∣∣∣∣
∑

n>N bnδnx
n∑

n≥0 bnx
n

∣∣∣∣∣
< 3ε,

which proves the result.

Corollary 2. Suppose the sequence (an) has an asymptotic expansion given by

an ≈
∑
k≥0

αk(n),
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where, for each k ≥ 0, αk(n) is nonnegative or nonpositive for large n,
∑

n≥0 αk(n)xn

converges for all |x| < 1, and ∑
n≥0

αk(n) = ±∞.

Then ∑
n≥0

anx
n ≈

∑
k≥0

fk(x) as x→ 1−,

where
fk(x) =

∑
n≥0

αk(n)xn.

Proof. If we fix K ≥ 1 and write

an =
K−1∑
k=0

αk(n) + εK(n)

then by assumption we have
εK(n) ∼ αK(n)

as n→∞. By Theorem 1 we may deduce that∑
n≥0

εK(n)xn ∼
∑
n≥0

αK(n)xn

as x→ 1−, or, in other words,∑
n≥0

εK(n)xn = fK(x) + o(fK(x)),

and thus

∑
n≥0

anx
n =

∑
n≥0

(
K−1∑
k=0

αk(n) + εK(n)

)
xn

=
K−1∑
k=0

fk(x) +
∑
n≥0

εK(n)xn

=

K∑
k=0

fk(x) + o(fK(x))

as x→ 1−. As K is arbitrary the result follows.
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Corollary 3. Suppose

n∑
k=0

ak ∼
n∑
k=0

bk as n→∞,

where
∑

k≤n bk is nonnegative or nonpositive for large n,

∑
n≥0

(
n∑
k=0

bk

)
xn

converges for all |x| < 1, and ∑
n≥0

n∑
k=0

bk =∞.

Then ∑
n≥0

anx
n ∼

∑
n≥0

bnx
n as x→ 1−.

Proof. We have

∑
n≥0

anx
n = (1− x)

∑
n≥0

(
n∑
k=0

ak

)
xn

∼ (1− x)
∑
n≥0

(
n∑
k=0

bk

)
xn

=
∑
n≥0

bnx
n

as x→ 1− by Theorem 1.

Corollary 4. Suppose
n∑
k=0

ak ∼ bn as n→∞

and
bn − bn−1 ∼ cn as n→∞,

where cn is nonnegative or nonpositive for large n,
∑

n≥0 cnx
n converges for all

|x| < 1, and ∑
n≥0

cn =∞.

Then ∑
n≥0

anx
n ∼

∑
n≥0

cnx
n as x→ 1−.
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Proof. By the Stolz-Cesàro theorem we know that

n∑
k=0

ck ∼ bn ∼
n∑
k=0

ak as n→∞, (5)

so we may apply Corollary 3 to see that∑
n≥0

anx
n ∼

∑
n≥0

cnx
n as x→ 1−.

2 Examples

The examples below deal mainly with arithmetic functions from number theory since
they’re canonically so badly behaved. With the help of the results obtained above
we can relate the behavior of their generating functions to power series with much
more regular coefficients.

2.1 The divisor functions

Let
σa(n) =

∑
d|n

da

represent the sum of ath powers of the divisors of n. It is known that

n∑
k=1

σ0(k) ∼ n log n as n→∞

and
n∑
k=1

σa(k) ∼ ζ(a+ 1)

a+ 1
na+1 as n→∞

for all a ≥ 1. Since

n log n− (n− 1) log(n− 1) ∼ log n as n→∞

and
na+1 − (n− 1)a+1 ∼ (a+ 1)na as n→∞,

we gain from Corollary 4 that∑
n≥1

σ0(n)xn ∼
∑
n≥2

(log n)xn as x→ 1−

and ∑
n≥1

σa(n)xn ∼ ζ(a+ 1)
∑
n≥0

naxn as x→ 1−

for all a ≥ 1.
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2.2 The sum of two squares function

Let r(n) denote the number of representations of n by two squares. It is known that

n∑
k=1

r(k) ∼ πn as n→∞,

so, since πn− π(n− 1) = π, by Corollary 4 we have∑
n≥1

r(n)xn ∼ π
∑
n≥0

xn =
π

1− x
as x→ 1−.

2.3 Prime numbers

Let π(n) denote the number of primes less than or equal to n. The prime number
theorem says that

π(n) ∼ n

log n
,

so by Theorem 1 we have∑
n≥1

π(n)xn ∼
∑
n≥1

n

log n
xn as x→ 1−.

We can also consider the power series having prime powers,∑
p prime

xp =
∑
n≥0

anx
n,

where

an =

{
1 if n is prime,

0 otherwise.

Of course
n∑
k=0

ak = π(n) ∼ n

log n
,

so since
n

log n
− n− 1

log(n− 1)
∼ 1

log n

we have, by Corollary 4,∑
p prime

xp ∼
∑
n≥1

xn

log n
as x→ 1−.
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3 Explicit asymptotics via integrals

Lemma 5. For a given function ψ : [N,∞)→ R+ suppose that the map t 7→ ψ(t)xt

is unimodal with maximum at t = tx ≥ N , 0 < x < 1. Then∑
n≥N

ψ(n)xn =

∫ ∞
N

ψ(t)xt dt+O
(
ψ(tx)xtx

)
+O(1)

as x→ 1−.

Proof. For N ≤ t ≤ tx the map t 7→ ψ(t)xt is monotone increasing, so

ψ(N)xN − ψ(tx)xtx +

∫ tx

N
ψ(t)xt dt ≤ ψ(N)xN −

∫ tx

btxc
ψ(t)xt dt+

∫ tx

N
ψ(t)xt dt

= ψ(N)xN +

∫ btxc
N

ψ(t)xt dt

= ψ(N)xN +

btxc∑
n=N+1

∫ n

n−1
ψ(t)xt dt

≤ ψ(N)xN +

btxc∑
n=N+1

∫ n

n−1
ψ(n)xn dt

=
∑

N≤n≤tx

ψ(n)xn

and

ψ(tx)xtx +

∫ tx

N
ψ(t)xt dt ≥ ψ(tx)xtx +

∫ btxc
N

ψ(t)xt dt

= ψ(tx)xtx +

btxc∑
n=N+1

∫ n

n−1
ψ(t)xt dt

≥ ψ(tx)xtx +

btxc∑
n=N+1

∫ n

n−1
ψ(n− 1)xn−1 dt

≥ ψ(btxc)xbtxc +

btxc∑
n=N+1

ψ(n− 1)xn−1

=
∑

N≤n≤tx

ψ(n)xn.

It follows that ∑
N≤n≤tx

ψ(n)xn =

∫ tx

N
ψ(t)xt dt+O(1) +O

(
ψ(tx)xtx

)
(6)
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since ψ(N)xN = O(1) for 0 < x < 1.
Similarly the map t 7→ ψ(t)xt is monotone decreasing for t ≥ tx, so

− ψ(tx)xtx +

∫ ∞
tx

ψ(t)xt dt

= −ψ(tx)xtx +

∫ btxc+1

tx

ψ(t)xt dt+
∑

n≥btxc+1

∫ n+1

n
ψ(t)xt dt

≤ −ψ(tx)xtx + ψ(tx)xtx +
∑

n≥btxc+1

∫ n+1

n
ψ(n)xn dt

=
∑
n>tx

ψ(n)xn

and

ψ(tx)xtx +

∫ ∞
tx

ψ(t)xt dt ≥ ψ(tx)xtx +

∫ ∞
btxc+1

ψ(t)xt dt

= ψ(tx)xtx +
∑

n≥btxc+2

∫ n

n−1
ψ(t)xt dt

≥ ψ(tx)xtx +
∑

n≥btxc+2

∫ n

n−1
ψ(n)xn dt

≥ ψ(btxc+ 1)xbtxc+1 +
∑

n≥btxc+2

ψ(n)xn

=
∑
n>tx

ψ(n)xn.

Thus ∑
n>tx

ψ(n)xn =

∫ ∞
tx

ψ(t)xt dt+O
(
ψ(tx)xtx

)
(7)

Combining (6) and (7) we have∑
n≥N

ψ(n)xn =
∑

N≤n≤tx

ψ(n)xn +
∑
n>tx

ψ(n)tn

=

∫ ∞
N

ψ(t)xt dt+O(1) +O
(
ψ(tx)xtx

)
,

as desired.

3.1 The divisor functions again

We showed above that∑
n≥1

σ0(n)xn ∼
∑
n≥1

(log n)xn as x→ 1−
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and ∑
n≥1

σa(n)xn ∼ ζ(a+ 1)
∑
n≥0

naxn as x→ 1−

for all a ≥ 1.
Let’s consider the first sum. By differentiating we see that the map t 7→ (log t)xt

has a maximum at

tx = − 1

(log x)W (−1/ log x)
,

where W is the Lambert W function. Since log x ∼ x−1 as x→ 1 and W (λ) ∼ log λ
as λ→∞ we know that

(log tx)xtx ∼ − log(1− x)

as x→ 1−. As for the corresponding integral, if we set λ = −1/ log x then we have∫ ∞
1

(log t)xt dt =

∫ ∞
2

e−t/λ log t dt

= λ

∫ ∞
1/λ

e−s log(λs) ds

= λ log λ

∫ ∞
1/λ

e−s ds+ λ

∫ ∞
1/λ

e−s log s ds,

where in the second line we made the change of variables t = λs. Both integrals
converge as λ→∞, so the second term is clearly dominated by the first. Thus∫ ∞

1
(log t)xt dt ∼ λ log λ ∼ log(1− x)

x− 1
.

as x→ 1− so we may conclude by Lemma 5 that∑
n≥1

σ0(n)xn ∼ log(1− x)

x− 1
as x→ 1−. (8)

Now let’s consider the second sum. By differentiating we similarly find that the
map t 7→ taxt has a maximum at

tx = − a

log x

with height

taxx
tx =

aae−a

(− log x)a

The integral in this case is easier to handle since it can be evaluated in closed form
as ∫ ∞

0
taxt dt =

Γ(a+ 1)

(− log x)a+1
∼ Γ(a+ 1)

(1− x)a+1
.

Appealing to Lemma 5 we may conclude that∑
n≥1

σa(n)xn ∼ ζ(a+ 1)Γ(a+ 1)

(1− x)a+1
as x→ 1−. (9)
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3.2 Prime numbers again

We showed above that∑
n≥1

π(n)xn ∼
∑
n≥1

n

log n
xn as x→ 1−

and ∑
p prime

xp ∼
∑
n≥1

xn

log n
as x→ 1−.

The map t 7→ t
log tx

t is unimodal on t ≥ 3 for x sufficiently close to 1 with x < 1,
and using an argument similar to the ones above it’s possible to show that∑

n≥1
π(n)xn ∼ − 1

(1− x)2 log(1− x)
as x→ 1−.

The second sum is easier since the map t 7→ 1
log tx

t is strictly decreasing for all
t ≥ 2. We can then compare the sum to the integral immediately and, after some
estimation, arrive at the conclusion that∑

p prime

xp ∼ 1

(x− 1) log(1− x)
as x→ 1−.
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