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1 Main results

Theorem 1. Suppose a, ~ b, as n — oo, where b, is nonnegative or nonpositive
for large n, Y, <, bnax™ converges for all |x| < 1, and

an = +o00.

n>0
Then
E Anx" ~ g bna™ as T — 1.
n>0 n>0

Proof. We can assume, without loss of generality, that b, is eventually nonnegative.
If necessary we just replace a,, and b, with —a,, and —b,,, respectively.

By assumption a,, = b, 4+ b,6,, where §, — 0 asn — oco. Fix e >0, let N >0
be such that |6,| < € and b, > 0 for all n > N, then write

Z anx” = Z(bn + bpdp)z"

n>0 n>0
= Z bpa™ + Z b o™
n>0 n>0
= " baa" + D badpa™ + D bpdpa (1)
n>0 n>N n<N

We will show that the two rightmost sums are small when compared with >, - b,a™.

Note that we can find an Xy € [0,1) such that > qb,2" > 0 for Xo <2 < 1.
Throughout the proof we will assume that x lies in this interval.
First we’ll handle the rightmost sum in (1). We have

anN bndna™ ZnSN bn |6n|
2 n>0 bna” >0 bnz™




so since Y, < bpa™ — 00 as x — 17 we can find an X; € [0,1) such that

b0,
‘ZKNQC <€ (2)

n>0 bpx™

for X1 <z <1.
Next we’ll treat the sum ) _ n b, d,2". By our choice of N we may deduce that

Z bnonz™| < Z by |On|2"

n>N n>N

<e€ Z bnx™

n>N

:eanac”—e Z bnx™

n>0 n<N

<€ bpz" e Y |bl. (3)

n>0 n<N

We can find an X5 € [0, 1) such that

ZnSN ’bn ‘
ano bn

for X3 < x < 1, so under this condition we gather from (3) that

Z bnonx™

n>N

< 2¢ Z bpx™. (4)

n>0

In light of (2) and (4), if we assume that max{ Xy, X1, X2} < z < 1 then by (1)
we have

> >0 OnT ‘ ‘ Zn<N b 5n37 S o n budna™
‘ n>0 bpa™ n>0 ano bpa™
anN bnonz" Y oo ndnx® ‘
- ano bnx ano bpx™
< 3e,
which proves the result. ]

Corollary 2. Suppose the sequence (a,) has an asymptotic expansion given by

ap ~ Z ak(n)

k>0



where, for each k > 0, oy (n) is nonnegative or nonpositive for largen, Y, < ax(n)x”
converges for all |x| < 1, and

> ag(n) =

n>0
Then
Zanx”%ka(:c) ast — 17,
n>0 k>0
where
= Z ag(n)z"
n>0

Proof. If we fix K > 1 and write

K—

._.

ak %-GK’ )
k=0

then by assumption we have
ex(n) ~ ak(n)

as n — 0o. By Theorem 1 we may deduce that

Z ex(n)z”™ ~ Z ag(n)z"

n>0 n>0

as x — 17, or, in other words,

Y ex(n)a" = fr(x) + o fx(x)),

n>0

and thus

> ana™ = Z(KZ n) +ex(n )) "

n>0 n>
K-
- )+ et
k=0 n>0

() + o(fk(2))

I
Mx

=
Il

0

as ¢ — 17. As K is arbitrary the result follows.



Corollary 3. Suppose

ZakNZbk as n — 00,

where Zkgn by, is nonnegative or nonpositive for large n,

Z(n bk)x”
n>0 \k=0

Zzn:bk:oo.

converges for all |z| < 1, and

n>0 k=0
Then
Zanx" ~ g bna™ as T — 1.
n>0 n>0

Proof. We have
Zanl‘” =(1-x) Z (i: ak> x"
n>0 \k=0

~ (1 —x)z (Zbk> x"
n>0 \k=0
:anx"

n>0
as x — 1~ by Theorem 1. O
Corollary 4. Suppose
n

Z a ~ by as n — 0o

k=0
and

by, — bp—1 ~ ¢y, as n — 0o,

where ¢, is nonnegative or nonpositive for large n, > <,cax™ converges for all

|z| <1, and
S e, = oo

n>0
Then
g apx™ ~ E cpT” asx — 1.
n>0 n>0



Proof. By the Stolz-Cesaro theorem we know that

n n
chwbnNZak as n — 00,
k=0 k=0
so we may apply Corollary 3 to see that

E anx™ ~ E cpx” asx — 1°.

n>0 n>0

2 Examples

The examples below deal mainly with arithmetic functions from number theory since
they’re canonically so badly behaved. With the help of the results obtained above
we can relate the behavior of their generating functions to power series with much

more regular coeflicients.

2.1 The divisor functions

Let

oa(n) = Z d®

dn

represent the sum of a' powers of the divisors of n. It is known that

n
Zao(kz)wnlogn as n — oo
k=1

and .
1
Zaa(k) ~ Mnmr1 as n — 0o
a+1
k=1
for all @ > 1. Since
nlogn — (n— 1)log(n — 1) ~ logn as n — oo
and
a+1

nt — (n— 1) ~ (a4 1)n® as n — oo,

we gain from Corollary 4 that

Zao(n)x” ~ Z(log n)z" as x — 17

n>1 n>2
and
Zaa(n)x”rv((a—Fl)Znax” asx — 17
n>1 n>0
for all a > 1.



2.2 The sum of two squares function
Let r(n) denote the number of representations of n by two squares. It is known that

n
Zr(k)wwn as n — 0o,
k=1

so, since mn — w(n — 1) = 7, by Corollary 4 we have

r(n)z ~m ) "= T asz — 17.
Z Z 1—x

n>1 n>0

2.3 Prime numbers

Let 7(n) denote the number of primes less than or equal to n. The prime number

theorem says that
n

so by Theorem 1 we have

Zﬂ(n)x" ~ Z lognxn asx — 1.

n>1 n>1

We can also consider the power series having prime powers,

E xP = E apx",

p prime n>0
where
1 if n is prime,
n — .
0 otherwise.
Of course
n
n
g ar = m(n) ~ ,
logn
k=0
S0 since

n n—1 1

logn  log(n—1) ~ logn
we have, by Corollary 4,

Z xpNzloxgn

p prime n>1

asx — 1.




3 Explicit asymptotics via integrals

Lemma 5. For a given function v : [N,00) — RT suppose that the map t — (t)z’

1s unimodal with mazimum att =t, > N, 0 < x < 1. Then

3 w(n)a” = / P(t)at dt + O ((ts)z') + O(1)
n>N N

as T — 1.

Proof. For N <t <t, the map t — 1 (t)z" is monotone increasing, so

BNz — h(te)z's + N b(t)at dt < (NN — N b(t)at dt + N b(t)at dt
N N

Lte]
[to]
= (N)z™ + Y(t)xt dt
N
LtIJ n

=NV + Y Y(t)a' dt

n=N+1 n—1
]

< PN+ Y /

n=N+1""

= > )"

N<n<ty

and

L [te]
D(ta)a' + / P)atdt > wt)at + [ bt dt
N

N
Ltz

= (ta)a’s + ) /

Y(t)at dt
n=N+17/7"1

It follows that

' Y(n)x" dt
-1



since (N)z™N = O(1) for 0 < x < 1.
Similarly the map ¢ — LD( )z is monotone decreasing for ¢ > t,, so

— (tg)xt + ¢mﬁﬁ

te

= —(ty)z' +/thj+1 )zt dt + Z / Y(t)at dt
ta

n>|tz |

—h(tg) ™™ 4 P(te) ' + Z /n+1 n)x" dt

n>|tz |+1
= ana:

n>tz

and

o0

Gt)at + [ o)t dt > o(t)at + / W)t dt

te [tz |+1

xtz+ Z t)x tat

n>|te|+27 " 1

xtz+ Z n)x" dt

n>|te|4+27 " 1

> ([te] + Dl N g(n)an

n> |ty |42
= > )z

TL>tz
Thus

Combining (6) and (7) we have

Syt = D pn)a"+ Y vt

n>N N<n<ty n>tg
—/mwwﬂﬁ+mm+0w@n%,
N

as desired.

3.1 The divisor functions again

We showed above that

Zoo(n)m” ~ Z(log n)x" as ¢ — 17

n>1 n>1



and
Zaa(n)svn ~((a+1) Znax" asx — 17
n>1 n>0
for all ¢ > 1.
Let’s consider the first sum. By differentiating we see that the map t — (logt)xz*

has a maximum at ]

(logz)W(—1/logx)’
where W is the Lambert W function. Since logz ~ z—1asz — 1 and W(\) ~ log A
as A — oo we know that

by = —

(logtz)z' ~ —log(1 — )

as ¢ — 17. As for the corresponding integral, if we set A = —1/log x then we have

/ (logt):vtdt:/ e M ogtdt
1

2
= )\/ e *log(As) ds
1/X

:)\log)\/ e_sds—i—)\/ e *logsds,
1/ 1/

where in the second line we made the change of variables t = As. Both integrals
converge as A — o0, so the second term is clearly dominated by the first. Thus

o log(1 —
/ (logt)x' dt ~ Mlog X ~ M.
1 r—1
as * — 1~ so we may conclude by Lemma 5 that
log(1 —
Zao(n)x” ~ og(lx) asx — 1. (8)
a:‘ p—

n>1
Now let’s consider the second sum. By differentiating we similarly find that the
map t — t%2 has a maximum at

a
ty = —
log
with height
tigle = _ae
(—log z)®

The integral in this case is easier to handle since it can be evaluated in closed form
as
/Ootaa?tdt: Pletl)  Tla+l)
0 (“loga) 1~ (L —z)rt
Appealing to Lemma 5 we may conclude that

S oyt ~ S0V

(1 _ :U)a—i-l

as T — 17. (9)
n>1



3.2 Prime numbers again

We showed above that

Zﬂ(n)a;” ~ Z 10gnx" as T — 17

n>1 n>1
and
z" _
Z P ~ Z asz — 1.
- logn
p prime n>1

The map t — @xt is unimodal on ¢ > 3 for x sufficiently close to 1 with z < 1,
and using an argument similar to the ones above it’s possible to show that
1

"o 1.
;ﬂ(n)x (1= 2)2log(1 — ) as r —

The second sum is easier since the map ¢ +— @l’t is strictly decreasing for all

t > 2. We can then compare the sum to the integral immediately and, after some
estimation, arrive at the conclusion that
1

P~ 1.
> @ @—Dlog(l—z) %7

p prime

10



